

PEARLS OF LABORATORY MEDICINE

von Willebrand Disease

Kristi J. Smock, MD

Associate Professor of Pathology
University of Utah Department of Pathology
Medical Director, Hemostasis/Thrombosis Laboratory
ARUP Laboratories

DOI:10.15428/CCTC.2018.298414

von Willebrand factor (vWF)

- Multimeric protein that mediates adhesion of platelets at sites of vascular injury
 - Collagen
 - Platelet glycoprotein lb (GP1b) receptor
 - High-molecular-weight (HMW) multimers are more effective at binding platelets
- Carrier for coagulation factor VIII (FVIII)

von Willebrand disease (vWD)

- Deficiency (quantitative) and/or dysfunction (qualitative) of vWF
- Results in defective platelet adhesion and mucocutaneous bleeding pattern
- One of the most common inherited bleeding disorders
 - Usually autosomal dominant
- Rare acquired cases

vWD etiology

- Decreased production
- Abnormal secretion
- Increased degradation
- Abnormal multimeric pattern
- Abnormal platelet binding
- Abnormal collagen binding
- Abnormal FVIII binding

Quantitative: types 1 and 3

Qualitative: type 2 subtypes

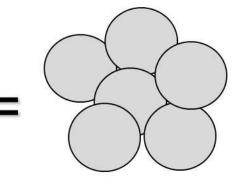
Initial hemostasis evaluation

Test	Result in vWD
Platelet count	Usually normal
Prothrombin time (PT)	Normal
Activated partial thromboplastin time (aPTT)	Abnormal in severe vWD, often normal in mild/moderate vWD
Platelet function tests	Abnormal in severe vWD, often normal in mild/moderate vWD

Initial vWD evaluation

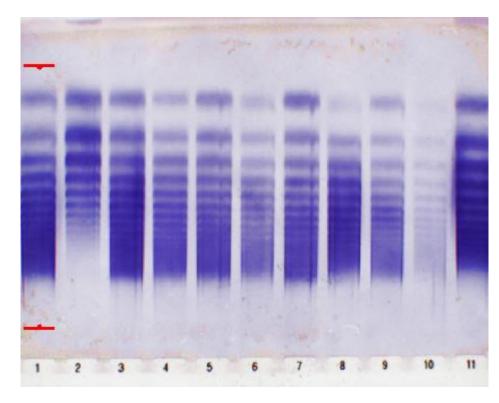
Test	Methodology
von Willebrand factor antigen (vWF:Ag)	Immunoassay
von Willebrand factor activity (Ristocetin cofactor activity, vWF:RCo)	Platelet agglutination
Factor VIII activity	Clot-based (aPTT)
Multimeric analysis	Gel electrophoresis; used for vWD subtyping; shows presence and relative concentration of various sizes of multimers

vWF:RCo


- Platelet agglutination method
 - Ristocetin causes patient HMW vWF to bind and agglutinate reagent platelets, decreasing turbidity

Patient von Willebrand factor

Ristocetin and platelets



Multimeric analysis

LMW multimers

HMW multimers

Type 1

Test	Result	
vWF:Ag	Decreased (variable severity)	
vWF:RCo	Decrease proportionate to vWF:Ag	
RCo:Ag Ratio	Normal (close to 1)	
FVIII	Normal or decreased	
Multimer Example: Normal multimer	Normal	

Type 3

Test	Result	
vWF:Ag	Absent	
vWF:RCo	Absent	
FVIII	<10% of normal	
Multimer	Absent	

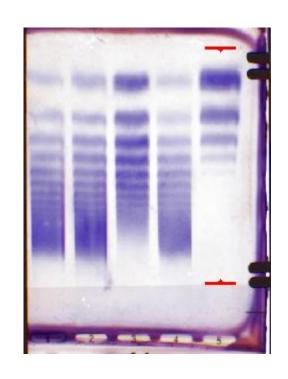
Type 2 subtypes

- Qualitative (protein functions abnormally)
- Mutations affect interaction with ligands
 - Missing large multimers (HMW and/or IMW)
 - 2A, 2B, platelet-type
 - Decreased platelet or collagen binding
 - 。2M
 - Decreased FVIII binding
 - 。2N

Type 2 – use of activity to antigen ratio

- Majority of type 2 cases (except 2N, some cases of 2M) demonstrate decreased platelet binding activity
 - Missing large multimers
 - Loss of function mutation affecting platelet binding domain
- Results in decreased activity:antigen ratio (such as RCo:Ag ratio) (< 0.5 - 0.7)

Example: Type 2A


Test	Result	
vWF:Ag	Mild decrease	
vWF:RCo	Moderate to severe decrease	
RCo:Ag Ratio	Decreased	
FVIII	Normal or decreased	
Multimer Example: Normal multimer	Missing HMW and IMW multimers	

Example: Type 2A

Test	Result	Reference Interval
vWF:Ag	46%	52-214%
vWF:Rco	<10%	51-215%
Rco:Ag Ratio	<0.2	>0.5
FVIII	60%	56-191%
Multimer	HMW/IMW multimers absent	Normal

References

- Nichols WL, Hultin MB, James AH, et al. Von Willebrand disease (vWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008;14:171-232
- 2. Sharma R and Flood VH. Advances in the diagnosis and treatment of Von Willebrand disease. Blood 2017;130(22):2386-91.
- 3. Roberts JC and Flood VH. Laboratory diagnosis of von Willebrand disease. Int Jnl Lab Hem 2015;37 (Suppl. 1): 11-17.

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: No disclosures
- Consultant or Advisory Role: No disclosures
- Stock Ownership: No disclosures
- Honoraria: No disclosures
- Research Funding: No disclosures
- Expert Testimony: No disclosures
- Patents: No disclosures

Thank you for participating in this Clinical Chemistry Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free Clinical Chemistry app on iTunes today for additional content!

Follow us:

