

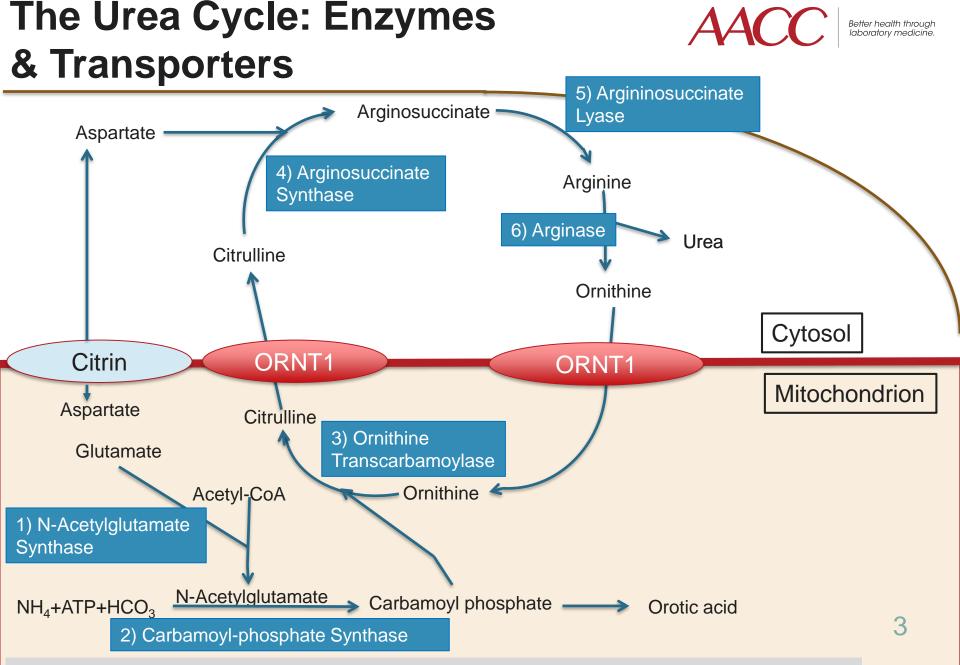
PEARLS OF LABORATORY MEDICINE

Inherited Disorders of the Urea Cycle

Van Leung-Pineda, PhD

Children's Healthcare of Atlanta Emory University School of Medicine

DOI: 10.15428/CCTC.2018.300962



The Urea Cycle

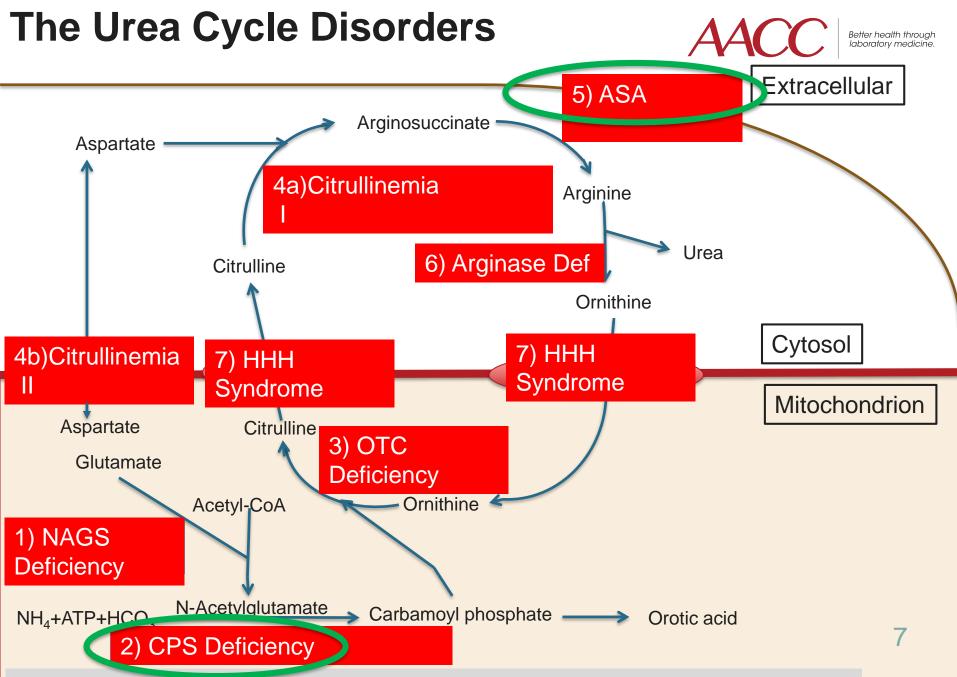
Metabolic pathway to excrete toxic waste nitrogen

- Convert ammonia to urea
- Full functionality in the liver
- Occurs in cytosol and mitochondria
- Proper function depends on enzymes and amino acid transporters

Disorders of the Urea Cycle

- In the US about 1 in 8,200 births
- Prevalence is 1 in 35,000
- Mortality is 24% in newborn, 11% in later onset
- Occur due to mutations in enzymes or transporters
 - Most are autosomal recessive inherited
 - One is X-linked: OTC deficiency

Disorders of the Urea Cycle II


- Present with **Hyperammonemia**
- Metabolic stress triggered
- Onset age can be variable
 - Neonatal
 - Infancy
 - Childhood/Adulthood

Disorders of the Urea Cycle III

Urea Cycle Disorder	Mutated Genes
1) NAGS deficiency (N-AcetylGlutamate Synthetase)	NAGS
2) CPS deficiency (Carbamoyl-Phosphate Synthase)	CPS1
3) OTC deficiency (Ornithine TransCarbamoylase)	OTC
4a) Citrullinemia I	ASS1
4b) Citrullinemia II	SLC25A13
5) ASA (Arginosuccicinc aciduria)	ASL
6) Arginase deficiency	ARG1
7) HHH syndrome (Hyperammonemia Hyperornithemia Homocitrullinuria)	ORNT1

Symptoms and Presentation

- Hyperammonemia
- Neurological symptoms
 - Seizures, lethargy, altered mental status
- Gastrointestinal symptoms
 - Vomiting, food avoidance, diarrhea, nausea
- Vomiting, Protein refusal
- Neonatal-Rapid deterioration
 - Respiratory alkalosis
- Infancy-Less acute
- Childhood and later-Chronic

Symptoms and Presentation II

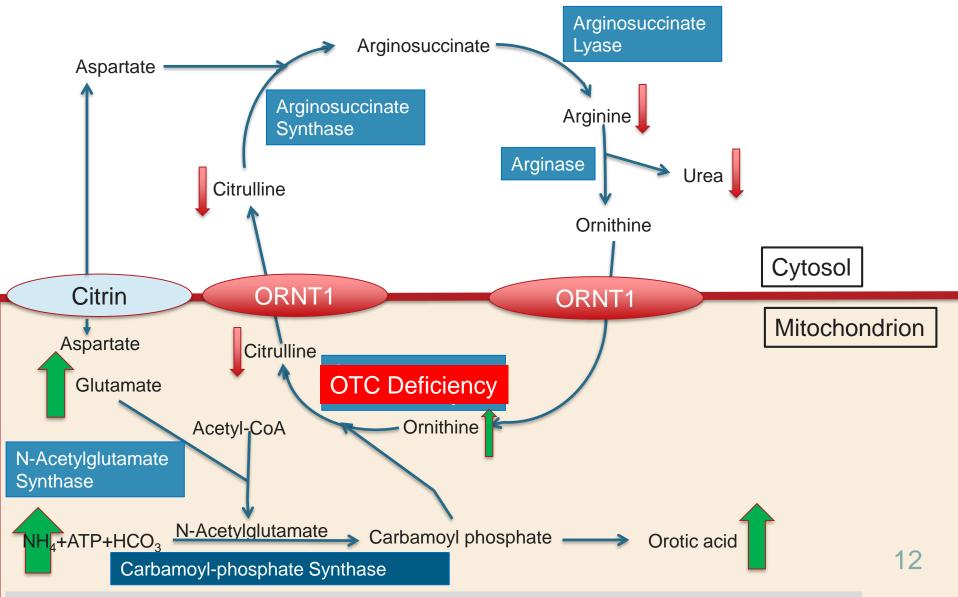
- Specific disorders presentations
 - Arginase deficiency-episodic hyperammonemia. Spasticity
 - HHH-universal physical and mental developmental delay
 - Citrullinemia II-neuropsychiatric defects, cholestasis and other hepatic abnormalities
- Acute encephalopathic events can occur at all stages

Laboratory Tests

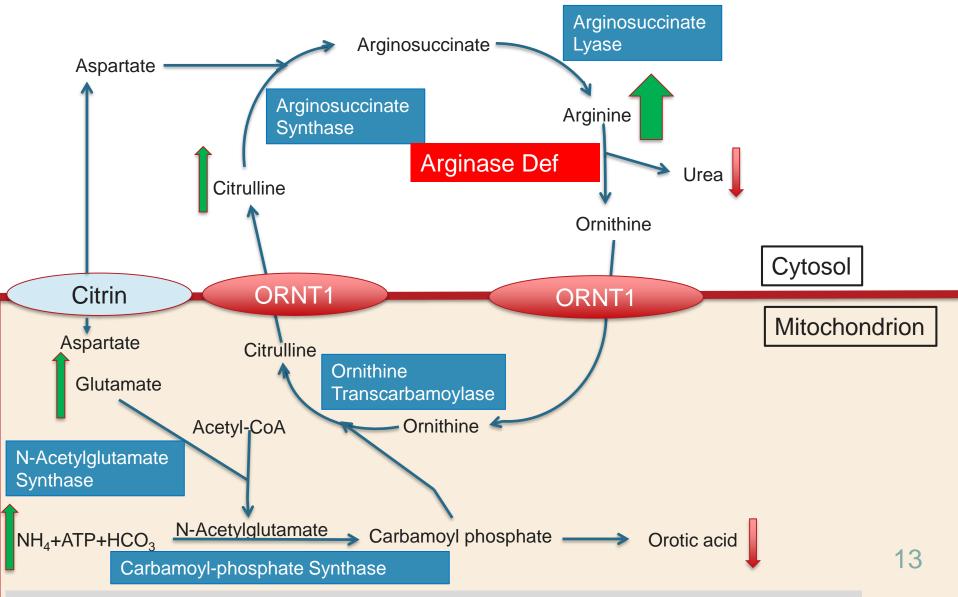
- Chemistries
 - Ammonia
 - $_{\circ}\,$ Electrolytes and glucose
 - $\circ \, pH$
 - BUN
 - Blood amino acids
 - Origanic Acids (Orotic acid)
 - Lactic acid
- DNA testing
- Newborn screening

Ammonia Testing

Variables that can affect interpretation


- Timing
- Arterial or venous sample
- Temperature
- Handling
- Different units

Example: OTC deficiency


Better health through laboratory medicine.

Example: Arginase deficiency

Better health through laboratory medicine.

Laboratory Abnormalities

Better health through laboratory medicine.

14

Disorder	NH ₄	BUN	Amino Acid Results	Organic Acid Results
CPS	↑-↑↑	\downarrow	↓-N Arg, Citr, / ↑ Ala, Gln	↓ orotic
OTC	N- ↑↑	\downarrow	 ↑ Ala, Gln, Orn ↓ Arg ↓ -N Citr 	↑- ↑↑ orotic
Citr I	^	\downarrow	<pre> ↑↑↑ Citr(P/U)/ ↑ Ala, Gln ↓↓ Arg </pre>	↑-↑↑ orotic
Citr II	1		↑ GIn,Citr N-↑ Arg	
ASA	↑-↑↑	↓	<pre>↑↑↑ ASA / N-↑ Ala, Gln, Citr ↓ Arg</pre>	↑↑ orotic
Arginase	N-↑↑	\downarrow	↑↑↑ Arg ↑Ala, Gin, Citr	↑-↑↑ orotic
NAGS	↑-↑↑	\downarrow	↓↓ Arg (P)/↓-N Citr/ ↑ Ala, Gln	↓orotic
ННН	↑-↑↑		↑↑ Homocitrulline/↑ Orn, Gln (P),	↑ orotic

CCTC

Treatment

- Acute treatment
 - 1. Ammonia reduction
 - Administer nitrogen scavenger (Ammonul)
 - Hemodialysis
 - 2. Reverse catabolic state
 - Fluid management
 - Stop/restrict protein intake
 - IV L-arginine
 - 3. Reduce risk of neurologic damage

Treatment II

- Extended management
 - Nutritional control
 - Prophylaxis to viral infection
 - Disease specific treatments, including liver transplant

Summary

- The Urea Cycle is the metabolic pathway by which ammonia is detoxified and excreted as urea
- Genetic defects in the enzymes that catalyze the urea cycle can result in the pathological accumulation of ammonia
- Ammonia is the key test for suspicion of UCDs, be aware of testing pitfalls
- Biochemical genetic tests can help identify the specific disorder and monitor treatment

References

- 1. Smith LD, Garg U. The Urea Cycle Disorders and Hyperammonemias. In: Garg U, Smith LD, Heese BA, editors. Laboratory Diagnosis of Inherited Metabolic Diseases. Washington, DC: AACC Press; 2012 p. 55–64.
- an Haack K, Bennett MJ. Genetic Metabolic Disorders.In: Dietzen DJ, Bennett MJ, Wong ECC, editors. Biochemical and Molecular Basis of Pediatric Disease. 4th Ed. Washington, DC:AACC Press; 2010 p. 235-260.
- 3. UpToDate. Urea Cycle Disorders: Clinical Features and Diagnosis. https://www.uptodate.com/contents/urea-cycle-disorders-clinical-features-anddiagnosis?search=urea%20cycle%20disorder&source=search_result&selectedTitle=1~54&usage_type=de fault&display_rank=1 (Accessed November 2018).
- 4. UpToDate. Urea Cycle Disorders: Management. https://www.uptodate.com/contents/urea-cycle-disordersmanagement?search=urea%20cycle%20disorder&source=search_result&selectedTitle=2~54&usage_type =default&display_rank=2 (Accessed November 2018).
- 5. Brusilow SW, Maestri NE. Urea cycle disorders: diagnosis, pathophysiology and therapy. Adv Pediatr 1996; 43:127-70.
- 6. Batshaw ML, Tuchman M, Summar M, Seminara J, Members of the Urea Cycle DisordersConsortium. A longitudinal study of urea cycle disorders. Mol Genet Metab 2014; 113:127-30.

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: No disclosures
- Consultant or Advisory Role: No disclosures
- Stock Ownership: No disclosures
- Honoraria: No disclosures
- **Research Funding:** No disclosures
- Expert Testimony: No disclosures
- Patents: No disclosures

AACC

Better health through laboratory medicine.

Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

